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A method of configuration interaction designed for general molecular potentials is outlined. The 
technique employed to arrive at a symmetrized multideterminantal basis for such calculations relies 
heavily on certain properties of Abelian groups; in particular the M L quantum number commonly 
employed in atomic structure calculations is replaced in the general molecular case by the index p 
which labels irreducible representations of some appropriate Abelian group. Formation of the desired 
symmetrized linear combinations of determinants is thereupon accomplished solely by means of a 
series of simple diagonalizations, a procedure which insures both the linear independence and the 
orthonormality of the resultant basis set. CI treatments involving the C4H 4 isomer tetrahedrane 
(T~ point group) and the linear nitrous oxide NNO molecule are considered in some detail with a 
view toward illustrating the use of the techniques described herein. Finally, a survey of a series of recent 
calculations utilizing the CI method is made and it is concluded from these results that the effects of 
such treatment vary strongly from one system to another, depending in a very specific manner upon 
the individual characteristics of a given molecule. 

Es wird eine Methode der Konfigurationswechselwirkung beschrieben, welche fiir allgemeine 
Molekiilpotentiale bestimmt ist. Die Technik, die verwendet wird, um eine symmetrisierte Vieldeter- 
minanten-Basis f/Jr solche Berechnungen zu erhalten, macht stark yon bestimmten Eigenschaften 
Abelscher Gruppen Gebrauch; insbesondere wird die Quantenzahl ML, welche iiblicherweise in Atom- 
strukturberechnungen verwendet wird, im allgemeineren Fall der Molek/ile durch eine Zahl p ersetzt, 
welche die irreduziblen Darstellungen einer geeigneten Abelschen Untergruppe der Gesamtgruppe des 
Molekiils bezeichnet. Die Bildung der gewfinschten symmetrisierten Linearkombination von Deter- 
minanten wird daraufhin durch eine Reihe yon einfachen Diagonalisierungen erreicht, einem Ver- 
fahren, das sowohl die lineare Unabh~ingigkeit als auch die Orthonormalit/it der entstehenden Basis- 
funktionen gew~ihrleistet. CI-Verfahren ffir das tetraedrische CgH 4 Isomer (T d Punktgruppe) und das 
lineare Stickoxydul NNO werden ausffihrlicher behandelt, um die Anwendung der beschriebenen 
Arbeitsmethoden zu erl~iutern. Abschliegend findet sich ein 1Jberblick fiber eine Reihe yon neuereu 
Berechnungen mit der beschriebenen CI-Methode, aus deren Ergebnissen gefolgert wird, dab die Wir- 
kungen solcher CI-Behandlungen yon einem System zum anderen sehr variieren und in ganz bestimm- 
ter Weise yon den einzelnen Eigenschaften eines gegebenen Molekfils abh~ingen. 

Description d'une m6thode d'interaction de configuration pour des potentiels mol6culaires 
g6n6raux. La technique utilis6e pour obtenir une base sym6tris6e de d6terminants repose fortement sur 
certaines propri6t6s des groupes ab61iens; en particulier le nombre quantique M L commun6ment 
utilis6 dans les calculs de structure atomique est remplac6 dans te cas mol6culaire g6n6ral par l'indice 
p qui caract6rise les repr6sentations irr6ductibles de certains groupes ab61iens appropri6s. Une s6rie 
de simples diagonalisations permet alors de former les combinaisons lin6aires sym6tris6es de d6ter- 
minants recherch6es; ce proc6d6 assure simultan6ment l 'ind6pendance lin6aire et l 'orthonormalit6 de la 
base r6sultante. Ces techniques sont illustr6es par I'I.C. sur le t6trah6drane, isom6re de C4H4 (groupe 
ponctuel Td) et la mol6cule lin6aire d'oxyde nitreux NNO. Finalement on effectue une revue d'une 
s6rie de calculs r6cents utilisant la m6thode d'I.C, et on en conclne que les effets de tels traitements 
varient fortement d'un syst6me/t l'autre, avec une d6pendance sp6cifique des caract6ristiques mol6- 
culaires individuelles. 
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1. Introduction 

The general technique of configuration interaction for generating electronic 
wavefunctions is a direct application of the variation principle for a linear trial 
function. From a computational point of view the most convenient basis set for 
carrying out a CI treatment consists of n-electron determinants constructed in the 
usual manner from a set of mutually orthonormal functions, each of which 
depends on the coordinates (spin and spatial) of only one electron; in this case 
the determinants so constructed are also mutually orthonormal and the form of 
their Hamiltonian 1 matrix elements is especially simple. For  some time now 
adequate orthonormal one-electron basis sets have been readily available because 
of the ease with which SCF MO calculations for a general polyatomic system 
can be carried out. The present paper outlines a practicM method for carrying out 
CI calculations which is especially designed for the treatment of general molecular 
potentials; in particular it presents a scheme for taking maximum advantage of the 
symmetry characteristics of such potentials. The method works equally well for 
closed and open shell SCF sets of molecular orbitals in a general n-electron 
formulation and can be modif iedquite  simply to utilize any set of orthonormal 
one-electron functions. 

2. Outline of  the Method 

To begin with, two mutually exclusive sets ~c and ~v, containing K and M 
elements respectively, are formed from the molecular orbitals of the parent SCF 
calculation. Ordinarily, the orbital energy el is used as a criterion for the con- 
struction of these sets; thereby the most stable occupied orbitals are included in 
~bc (core), the remaining occupied and a certain number of the most stable virtual 
MO's are placed in 4~v (valence), while the least stable unoccupied orbitals are 
usually ignored in the treatment. Each determinantal wavefunction is an anti- 
symmetrized product of n distinct spin orbitals: these include all of the 2K spin 
orbitals associated with the fixed core ~ and v others (n - 2K) which are selected 
from those associated with the valence set ~ .  Thus the total number of determinants 

comprised by the above prescription is ( 2 ~ 1 ) .  I T S " \  proves convenient to require 
\ / 

that the sets 4~ c and q~ each consist of complete shells of one-electron functions, so 
that their respective linear manifolds are invariant (stable) under the operations of 
the nuclear point group G (the complete set of spatial operators that commute 
with the Hamiltonian)2. 

A. Calculation of Integrals over Molecular Orbitals 

The integrals over molecular basis functions ~b i which are necessary for the 
calculation of Hamiltonian matrix elements between determinants can be divided 
into three categories: 

1 In this paper only purely electrostatic Hamiltonians are considered. 
2 In this connection it can also be assumed without loss of generality that each element in ~c 

and 4~ v transforms according to one of the irreducible representations of G, i.e. is a pure symmetry 
orbital [1, 2] of G. 
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1. all distinct electron repulsion integrals involving MO's belonging to the 
valence set 4~, 

[mnlm' n'] -- < (pm(1) cp,(2) lrl 2 (Pm'(1)(Pn'(2))  ' 

2. the 

the core, 

Pmm'=((Pm - - ~  

the total number of such integrals being 

22  1 ) ;  

( M ;  1)integrals describing the interaction of the valence MO's with 

q~c 

+ ~ {2[rnk]m'k] - [rnk[km']} ; 
k 

and 3. the contribution of the core orbitals to the total electronic energy of each 
determinant 

E . . . .  = 2 ('Ok -- - ~  [72 -- ~Ok + 2 (2Jkl - - K k l ) '  
k,l 

where Jkl and Kkl a r e  Coulomb and exchange integrals respectively. 
The diagonal energy of each determinant is then equal to the sum of E .... and 

the nuclear repulsion V N plus appropriate combinations of diagonal P matrix 
elements plus certain Coulomb and exchange integrals which are to be found 
among the quantities in the first category described above. The off-diagonal 
Hamiltonian matrix elements between pairs of determinants which differ by 
exactly one spin orbital (m and m') is equal to Prom' plus some combination of  
electron repulsion integrals involving only valence MO's; corresponding Hamil- 
tonian off-diagonal matrix elements between determinants which differ by 
exactly two spin orbitals can always be expressed in terms of integrals in the 
first category. Hamiltonian matrix elements between determinants differing by 
more than two spin orbitals vanish 3. 

All the integrals discussed above can be obtained in a straightforward manner 
by summing over the appropriate products of MO expansion coefficients and 
corresponding integrals over atomic basis functions; because of the symmetry 
properties of the molecular orbitals, however, considerable simplification in this 
procedure is readily available. Since the operators involved in the electron 
repulsion integrals and in the P matrix elements (since ~c consists of complete 
shells) belong to the fully symmetric representation of the nuclear point group G, 
each of these integrals must vanish whenever the direct product of the irreducible 
representations for all the MO's involved does not contain the fully symmetric 
representation of G. Utilization of this group theoretical property is especially 

3 All of these results of course arise from the determinantal form of the wavefunctions under 
consideration and the orthonormality of the MO basis set from which they are constructed. 

13" 
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simple if G is Abelian, since in this case the direct product of any two irreducible 
representations is itself an irreducible (one-dimensional) representation. Also for 
this reason, if G is non-Abelian, it is useful to employ an MO basis set consisting 
of functions which are pure symmetry orbitals not only o f  G but also of 9, one of 
its Abelian subgroups (as can be done without loss of generality). Thereupon a 
given molecular integral is set equal to zero unless the direct product of the 
representations for the MO's involved is the fully symmetric representation of the 
subgroup 9. Such a procedure within a CI treatment does not in general exhaust 
the possible simplifications available through application of group theoretical 
techniques but it has the advantage of eliminating the great majority of unnecessary 
computations which arise in a straight-forward evaluation of the necessary integrals 
while requiring a minimum input of symmetry characteristics for the valence 
MO's. In a typical case, for which C2v is used as the Abelian subgroup, this method 
eliminates the direct computation of approximately 75~ of the molecular 
integrals required for the CI treatment. 

B. Generation and Classification of Determinantal Wavefunaions 

Once the necessary integrals over molecular basis functions have been computed 
the determinantal wavefunctions to be considered are generated by constructing 
all possible combinations of v (n - 2K) occupied valence (from ~v) spin orbitals, 
with each distinct combination representing a single determinant, as discussed in 
Sect. 2A. The determinants are each classified according to the following four 
characteristics in order to facilitate their arrangement into symmetrized linear 
combinations: 1. their M s eigenvalue (since the determinants so constructed are 
eigenfunctions of Sz); 2. an index p indicating according to which irreducible 
representation of g the generated determinants transform 4 ; 3. an index v denoting 
to which excitation class (relative to the SCF ground state wavefunction) the 
determinants belong; and 4. an index V denoting the electronic configuration to 
which the determinants belong, i.e. a unique index is assigned to each distinct set 
of occupation numbers for the valence shells 5. While this classification is being 
carried out i t  is also useful to compute the diagonal energy for each of the generated 
determinants according to the formulae discussed in Sect. 2A. 

The determinantal wavefunctions are next arranged into symmetrized linear 
combinations, that is, the total linear space of determinants is partitioned into 
irreducible invariant subspaces of both spin and spatial point groups. It is well 
known that an electronic configuration is a linear space which is invariant under 
the application of all the symmetry operations of the combined spin and spatial 
point groups. Consequently, one need not consider symmetrized multideter- 
minantal functions which are linear combinations of determinants arising from 
different configurations, i.e. possessing different configuration indices 7 6. Further- 

4 In what follows it is assumed, as in Sect. 2A, that each valence MO transforms according to one 
of the irreducible representations of 9, an Abelian subgroup of G. Consequently, any product of these 
functions (and therefore each determinant) is a basis function for an irreducible representation of 9. 

5 In the case of an atom, for example, the.270 possible determinants with a 3pS3d 2 electronic 
configuration, and only those, would possess a given configuration index ~. 

6 Also, per force, one need not consider combinations of determinants belonging to different 
excitation classes. 
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more, it is not necessary to consider linear combinations which mix determinants 
with different eigenvalues of Ms since the Hamiltonian under discussion does 
not explicitly contain spin coordinates. For  even-electron systems one need only 
be concerned with determinants having M~ = 0 because of the existence of step-up 
and step-down spin angular momentum operators (with similar remarks for 
M~ = 1/2 in the treatment of odd-electron molecules). It is also clear that sets of 
determinants with the same values of M s and ? can be further divided without 
additional calculation into non-interacting subsets according to the 9 irreducible 
representation label p. 

It is then useful to divide the total linear space of determinants into subspaces 
denoted hereafter as f2', each of which consists of elements possessing the same 
values of Ms, p and ? (and per force v). It is always possible to obtain an orthonormal 
basis for each (2' subspace which consists of eigenvectors of the spin operator S 2 
because each of these subspaces is invariant under the operations of the full spin 
rotation group, and S z itself is Hermitian. Therefore one need only diagonalize 
the matrix of S z over the initial (orthonormal) determinantal basis of f2' in order 
to obtain the desired spin eigenfunctions with eigenvalues S(S + 1); methods for 
determining S 2 matrix elements over determinantal functions are well known [-3] 
and involve only a minor amount  of computation. 

C. Symmetrized Multi-Determinantal Functions for Non-Abelian Groups 

If the spatial point group G of the system under consideration is Abelian (only 
non-degenerate irreducible representations) the transformation to a basis of S 2 
eigenfunctions for each ~2' subspace represents the ultimate length to which group 
theoretical techniques may be carried to simplify the diagonalization of the full 
Hamiltonian matrix. For  non-Abelian G it is possible to proceed further by 
dividing each f2' space into non-interacting subspaces Q" consisting of elements 
possessing the same value of S as well as of M s, p, ? and v. It is then possible 7 to 
obtain a new multi-determinantal basis for each f2 r' subspace consisting of 
elements which are not only eigenfunctions of S 2 but which als0 transform accord- 
ing to one of the irreducible representations of G. By analogy to the method of 
obtaining S 2 eigenfunctions one attempts to arrive at such a basis by diagonalizing 
some appropriate symmetry operator. Such a procedure would then replace 
standard projection operator methods [-4] and related techni/iues which in 
practice involve a more formidable computational scheme than is required in the 
diagonalization method proposed herein. 

In searching for an operator in G suitable for this purpose it is clear that none 
of those in the Abelian subgroup 9 is adequate since matrices for these operators 
over any basis for a general f2" subspace are scalar multiples of the identity matrix. 
At the same time none of the non-commuting elements of G appears strictly 
analogous to S z in the spin case because of the following two factors: 1. such 
operators are not in general Hermitian and 2. an  f~" subspace is not in general 
closed under such operations since other partners in the basis for a given degenerate 
irreducible representation of G may well possess different values of the index 

7 This follows from the fact that one need not consider symmetrized functions which mix deter- 
minants belonging to different f2" subspaees. 
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p, i.e. transform according to different irreducible representations of g, than do the 
elements of s 

Closer examination, however, discloses a definite possibility that the matrix 
associated with a non-commuting element R of G relative to a given basis of O" 
is capable of undergoing diagonalization to produce the desired symmetrized 
multi-determinantal functions. To investigate this point it is useful to consider 
the matrix M(R) for a non-commuting operator R over an orthonormal basis for 
O" consisting of symmetrized functions of G. It can be shown that M(R) will be 
diagonal if no more than one partner for any given irreducible representation of 
G is present in f2"; for under these circumstances it follows that 

Mij(R) = ( f~',v', R f ; , v )  = F~p(R) \~i( f~"v' , ~ Jf~'P" 
(1) 

= rX~(R) 6i~, 

where f ; 'P is thej-th basis function for f2" transforming according to both of the 
irreducible representations F ~ of G and F v of g, with the index p now labelling 
rows of F ~ of G as well as irreducible representations of g (Sect. 2B). In order to 
insure this condition for every f2" subspace it is sufficient that every irreducible 
representation of G decomposes into distinct irreducible representations of the 
Abelian subgroup g; for in this case all partners for a given irreducible represen- 
tation of G can be distinguished from one another strictly on the basis of the index 
p and therefore each of them will be found in a different f2" subspace. 

Investigation of the finite non-Abelian spatial point groups shows that all 
those in the categories D~, C,v, Dnh and Dna possess at least one Abelian subgroup 
with the required property, namely that every irreducible representation of the 
non-Abelian group decomposes into distinct irreducible representations of the 
subgroup. Particular decompensations are given in Table 1 for each of these 
groups, as well as for the important special groups T, Th, Td, 0 and Oh. For every 
case there exist several suitable subgroups, each of which is hereafter referred to as 
a differentiating Abelian subgroup. Nor is the existence of such subgroups restricted 
to finite non-Abelian groups; for example, inspection of Table 1 shows that Do~h 
and Co~v are simply limiting cases for the D~h and C~ series in this respect. Finally, 
it can be shown that the two-dimensional rotation group is a differentiating 
Abelian subgroup of the full rotation group s. Thus, when applied to spherical 
potentials (atoms), the present method for obtaining symmetrized multi-deter- 
minantal functions employs a one-electron basis set which consists of symmetry 
orbitals of the two-dimensional rotation group, more commonly referred to as 
eigenfunctions of the spatial angular momentum operator L~ ; in this case the 
quantum number M L s e r v e s  the same purpose as the general index p discussed 
above. The desired multi-determinantal functions can then be obtained by 
diagonalizing the Hermitian operator L 2 for each O" subspace, a procedure which 
is of course well known [3]. This observation helps to identify the present method 
as a generalization of familiar techniques used in the treatment of atomic structure 

8 Proof  of this statement can be found byexamin ing  the traces of the D L (L being the total angular 
m o m e n t u m  quan tum number)  irreducible representation matrices corresponding to operators in the 
C2L+ 1 subgroup; these are found to be (2L + 1) for the identity operation and 0 for all other elements 
in the subgroup. Therefore, because of the Celebrated Theorem [5], D L decomposes into each of the 
2L + 1 one-dimensional irreducible representations of C2L + r which is itself a subgroup of the two- 
dimensional rotation group. 
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Table 1. Correlation of the irreducible representation F of the commonly occurring non-Abelian point 
groups G with those of an Abelian subgroup g. The notation employed is that of Ref . [6]. In all cases each 
F(G) decomposes into distinct irreducible representations of g; all other Abelian subgroups g' which 

bear the same relationship to a given G are listed in the last column 

G o r(G) r(g) 

Dn(n odd, > 3) C 2 A 1 A 
A 2 B 

/).(n even, > 4) D2 

Cnv(n odd, => 3) 

~n~(n even, > 4) 

O,,h(n odd, >_- 3) 

t).h(n even, > 4) 

C~ 

C2~ 

Czv 

D2h 

a 1 
A2 
B1 
B2 

+4-0 
A 1 

A2 

a 1 

A2 
B1 
B2 

A~ 
Ai 

, n - -1  

A7 
A~ 

Zig 
A2 e 
B19 
B2 e 

+4-0 
hlu 
A2u 
Blu 
B2u 

A A ~ 
B1 B1 
A B 2 
Ba B3 

oddjB2+Ba B 2 + B  a 

e v e n j A + B  1 A + B  1 

A t 

A" 

A' + A" 

A 1 A1 a 
A2 A2 
A1 B1 
A2 B2 

oddjBl+B2 BI+B2 

evenjAa+A2 AI+A2 

h 1 

B2 

A1 +B2 

A2 
Bt 

Az + B1 

Zg Zg a 

Blo Big 
A o B2 o 
Big B3g 

oddj B29 + B3g D2g + Bag 

evenjAg+Blg Ag+ Blg 
A. A. 
Bi, , B~  
Au B2u 
Blu B~u 

oddj B2. + B3,, B2u + B3u 

evenjA.+ B~u & + B~. 

gl 

C,, 

C2, C n 

C. 

C~, C. 

Cnh, Cn 
Cz, C~ 

C2, Cs, C, 
D2, C2v, C2h, 
Cnh, S, 

" This column refers to cases in which ~ is odd, while the preceding column deals with the ~ even case. 
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Table 1 (continued) 

G # F(G) F(9) 9' 

D.a(n odd, _-> 3) 

Dna(n even, > 2) 

T 

T~ 

T~ 

Oh 

C2h 

C2v 
( Cz - C~/2) 

Ca 

C3 

C2v 

D2 

D2h 

alg 
A2a 

Niu 
A2u 

A 1 
A2 
B1 
B2 
Ej( j= 1, n -  1) 

A 
E+ 
E_ 
T 

a o 
Ea+ 
E a - 

L 
Au 
Eu+ 
E u _ 
Y~ 

A 1 
A2 
E 
T1 
T: 

A 1 
Az 
E 
T1 
r~ 

alg 
A2 o 
Eg 
Tlg 
T2o 
Alu 
A2u 
E. 
Tlu 
T:~ 

oddj 
evenj 

Ag 
Bg 

Ag + Bg 

A. 
Bu 

Au + Bu 

a 1 
A2 
A2 
A1 
Bi + B 2 
Ai + A 2 

A 
E+ 
E_ 
A + E + + E _  

A 
E+ 
E_ 
A + E + + E _  
A 
E+ 
E_ 
A + E + + E _  

A 1 
A2 
AI + A2 
A2+BI  +B2 
A1 + B1 + B2 

A 
Bi 
A+B1 
BI +B2+B3 
A+B2+B3  

a o 
Big 
Aa + Big 
Big + B2 o + Bs o 
A a + B2 a + Ba a 
Au 
Biu 
A.+Blu 
Bl. + B2u + B3u 
A,. + B2. + B3, , 

C2, C~, Cn, 
$2~ 

C2, Cs, D2, 
$2. 

D2 

D2, C2v, D2h 
S2t~ 

C3~ $4 

C3 

C3,D2,C2v, 
C4, C4h, $4, $6 
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problems; it should be emphasized, however, that in general the matrix which is 
to be diagonalized need not correspond to an Hermitian operator. 

The matrix M(R) is related by a unitary transformation to every matrix M'(R) 
corresponding to the same operator R and defined with respect to some ortho- 
normal basis of ~2". Diagonalization of M'(R) leads uniquely to the eigenvalues of 
diagonal M(R) which, according to Eq. (1), are equal to particular diagonal 
elements of the irreducible representation matrices of G; it is easily shown that 
these diagonal matrix elements are in turn uniquely specified by the condition that 
each irreducible representation of G decomposes into distinct irreducible re- 
presentations of g 9. 

The eigenvectors of M'(R) in general differ from those of M(R) by a linear 
transformation which also must be unitary; unless this transformation mixes 
M(R) eigenvectors belonging to different irreducible representations of G, however, 
the eigenvectors of M'(R) still must be properly symmetrized multideterminantal 
functions. Such mixing can occur if and only if eigenvectors corresponding to 
different irreducible representations of G posses a common eigenvalue; from 
Eq. (1) it follows that this condition implies the existence of equal diagonal 
matrix elements belonging to rows of different irreducible representations of G 
but to the same irreducible representation of 9 lo. Table 2 demonstrates for each 
of the groups considered in Table 1 that it is possible to find at least one differen- 
tiating Abelian subgroup which leads to representation matrices for some group 
element whose diagonal elements do not exhibit such equalities 11. 

Thus at least for all the groups discussed above it is always possible to obtain 
a basis set for each g2" subspace consisting of symmetrized multi-determinantal 
functions solely by means of a series of simple diagonalizations; in turn, the set 
of groups considered herein exhausts the list of those commonly ocurring in the 
study of molecular potentials. In this manner, ultimately one can form an ortho- 
normal basis of symmetrized functions for both spin and spatial point groups 
which spans the entire linear space of determinantal wavefunctions. At least 
one major advantage in the utilization of a diagonalization procedure for this 
purpose is that it automatically insures both the linear independence and the 
orthonormality of the resultant multi-determinantal basis vectors. 

D. Final Stage of  the CI Treatment 

Once a properlY symmetrized set of multi-determinantal functions has been 
determined, it is a three-step process to complete the CI calculation. First, Hamil- 
tonian matrices over single determinants are constructed from the molecular 
integrals discussed in Sect. 2A, one matrix for each pair of values of M~ and p 
represented in the total secular equation 12. Next, each of these arrays is used to 
form smaller Hamiltonian matrices over symmetrized multi-determinantal func- 
tions obtained previously for each irreducible representation of the combined 
spin and spatial point groups involved in the treatment. Finally, each of the 

9 The condition allows the freedom of only diagonal unitary transformations among basis par tners. 
~0 That is, it implies that I'~v(R ) = F~'p(R) for ~ ~ ~'. 
11 Clearly not every differentiating Abelian subgroup possesses this property. 
~2 Only determinants with M~ = 0 in the even- and M s = 1/2 in the odd-electron case need be 

considered. 
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Table 2. Diagonal irreducible representation matrix elements F~p(R) for all the non-Abelian groups G 
listed in Table 1. The indices ~ and p are labels for the irreducible representations of G and g respectively, 
while R denotes an element of G; otherwise the notation is the same as that employed in Table 1. For a 
given G the Abelian subgroup g and the operator R are chosen such that no two diagonal matrix elements 
corresponding to the same value of p but to different values of a are equal. (Note that each I~pv(R ) is 
uniquely specified by the condition that its corresponding basis vector transform according to the p-th 

irreducible representation of the subgroup g) 

G 9 R F~e(R ) 

Dn(n odd, > 3) C2 Cn 

D. (n even, > 4) D z C, 

~ A B  

A 1 1 
A2 1 

~ A B 1 B 2 B 3 A B1 B2 B3 a 

A 1 1 1 
A 2 1 1 
BI - 1  - 1  
B 2 - 1  - 1  

( j  n ) c c c c 
Ej 

= 1 , _ _ - 1  evenj c c c c 

C.v(n odd, >= 3) C~ C. 

=.v(neven, >4) Czv C, 

D,h(nodd , >3)  C2v C. 

~I~ 
A' A" 

ct 

1 
A 2 ! l 

, ~  A1 A2 B1 B2 

A t 1 
A 2 1 
B 1 - 1  
B2 - 1 

( j  n ) odd -~ - 1  c c 
Ej 

1 ,  evenj e c 

A1 A2 B1 B2 a 

1 

1 
- 1  

- 1  
c c 

c c 

A1 A2 B1 Bz 

Ai ]1 
A~ 1 (j n-____) 

E~ = 1, c c 

A~ 1 
A~ 1 

j n - l l  
E~' = 1 , 2 /  c c 

n n 
a This column refers to cases in wh ich - -  is odd, while the preceding column deals with the - -  

even case. 2~j 2 . 2 
Throughout this Table c = cos - -  and c' = cos ~J .  

n n 



G g R 

D.h (n even, > 4) O2h C.  

D.a(n odd, -> 3) C2h C n 

General Molecular Potentials 

Table 2 (continued) 

r~v(R) 

Ala 1 
A2o 1 
Big - 1  
B2 a ( )o d, 

Ejg = 1 , ~ - 1  evenj c 
Alu 
A2u 
Blu 
B2u 

( Ej. = 1 , ~ - - 1  evenj 

Alg 
A2a 
Big 
B2 a ( n 

Eja = 1 , ~ - - 1  evenj c c 
Alu 
h2u 
Blu 
B2u 

( j n - 1 ) ~  
Eju = 1, ~- evenj 

A a Big B2a B3o A u BI,, B2u B],, 

- 1  
C 

C 
1 

- 1  
1 

- 1  
C C 

C 

Ae Bxo B2o B3g A. Blu Bzu B3u a 

1 
1 

--1 
--1 

C C 

1 
1 

- 1  
- 1  

C C 

r r 

Ag Bg A. B u 

Alo 1 
A2~ 1 

A~,, 1 
A 2,, 1 

E j . ( j = I , ~ - )  c c 
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D,a(n even, => 2) C2v $2. A1 A2 B1 B2 

A~ 1 
A 2 1 
B 1 - 1  
B 2 - 1  

E j ( ]= l ,n - -1)  oddj c' c' 
evenj c' c' 
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G 

T 

T~ 

% 

Oh 

9 R 

C3 C2 

C3 ah 

C2v C3 

D2 C3 

D2h C3 

Table 2 (continued) 

r;;(R) 

A E+ E_ 

A 1 
E+ 1 
E_ 1 

A E+ E_ 

A o 1 
Eo+ 1 
E o _ 1 

A .  - 1  
E.+ - 1 
E._ - 1 
T. �89 �89 �89 

~ A1 A2 Ba B2 

A 1 1 
A 2 1 
E -�89 -�89 
T 1 0 �89 - � 8 9  

o - k � 8 9  

• A B t B 2 B 3 

Ax 1 
A 2 1 

-�89 -�89 
T~ 0 -�89 �89 
T~ iO �89 -�89 

A a Bta B2a Bao A.  B1, , B2,, B3. 

Alg 1 
A2g 1 
~. -�89 -�89 
Ta. 0 
Tzg 0 
At,, i 
A2,, I 
E,, 

-�89 �89 
1 _�89 T 

1 
1 

-�89 -�89 
0 - ~  �89 

0 �89 -�89 

matrices over symmetrized functions is diagonalized to obtain the final CI  
wavefunctions. 

By far the mos t  t ime-consuming step in the entire CI  procedure  described above 
involves the t ransformat ion from integrals over A O  basis functions to those over 
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MO's required to construct the various Hamiltonian matrices. The majority of the 
remaining time necessary to complete the CI calculation is expended in carrying 
out the diagonalization of the Hamiltonian matrices over symmetrized functions. 
By contrast, the techniques involved in generating the determinantal wavefunc- 
tions, symmetrizing them and constructing the necessary Hamiltonian matrices 
from the molecular integrals constitute only a negligible part of the total computa- 
tions for a given CI calculation. Ordinarily the total CI treatment involves 
considerably less computation than is required to obtain the AO integrals and the 
set of SCF MO's which is prerequisite to it. 

3. Examples of the CI Method 

The utility of the CI method discussed in the previous section can perhaps 
best be illustrated by examining two typical applications, one for the hypothetical 
C4H 4 isomer tetrahedrane (T d point group) and the other for the nitrous oxide 
molecule NNO in its linear equilibrium geometry ( C ~  point group). 

A. Tetrahedrane : Ta 

Tetrahedrane has the following ground state electronic configuration 13: 

la~ lt62a~ Zt63a~ 3t 61er lt ~ 

A representative CI treatment for this system retains all the occupied MO's of 
a t and t 2 symmetry in the core ~b c (K = 12) with the valence set ~ consisting of the 
1 e and i t  I shells (M = 5). The number of valence electrons v is 4 and thus the total 

number of determinants involved in this calculation is ( 1 2 ) = 2 1 0 .  In this case 
\ - - /  

each excitation class v constitutes one electronic configuration 7: ground state e 4, 
single excitation e3tx, double e 2 t~ z, triple et~ and quadruple excitation t~. From 
Tables 1 and 2 the differentiating Abelian subgroup 9 is selected to be C2~ 14, a 
choice which allows one to employ a real MO basis set: (% eb) for the le shell 
transforming according to the al and a2 irreducible representations respectively 
of C2~ and (tla, tlb, tic ) for the t 1 shell transforming as its a2, bl and bz irreducible 
representations respectively. Of the 210 determinants 90 belong to the double 
excitation e 2 t~ configuration, which contains the following multiplets: 

2 1A1, 1A2, 3 1E, 1T 1, 3 1T2, 3A2, 3E, 3 3T1, 2 3T 2 and 5T 2 . 

A schematic diagram depicting the partitioning of this configuration into its 
multiplets is given in Fig. 1. Attention is restricted to the 42 determinants in this 
excitation class with Ms = 0; of these 12 transform as the A1, and 10 each as the 
A2, B1 and B 2 irreducible representations of the C2~ subgroup respectively 
(Table 1). Each of these four sets thus constitutes an orthonormal basis for a 
linear space of the type f2' discussed in the previous section. New orthonormal 
bases of spin eigenfunctions can be obtained for all four f2' spaces by diagonaliz- 

i3 Character table notation employed throughout this paper is that of Cotton [6]. 
14 In general the largest available differentiating Abelian subgroup is taken in order to take 

maximum advantage of the partitioning method discussed herein. 
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ing S 2 ; for example, in the At subspace the new basis consists of 8 singlets, 3 triplets 
and 1 quintuplet, 

The linear manifold of the 8 1A 1 functions constitutes a typical example of an 
Q" subspace. As indicated in Table 2, the final step in the symmetrization process 
is achieved by diagonalizing a C3 matrix for all O" subspaces. In the case of the 
~A t subspace this procedure yields 3 eigenvectors transforming as 1T z (eigenvalue 
0), 3 as 1E (eigenvalue -�89 and 2 as 1A 1 (eigenvalue 1); in a similar manner one 
obtains the other symmetrized functions desired as a basis for the e a tZl configura- 
tion. The entire process is then repeated for the e3tl,  et~ and t~ configurations, 

Configuration MsEigenfunctions o' Q" Symmetrized Basis 

/ ~ - -  2 IA 1 ,3 IEa,3~T2a 

/ / 
_ _ / / /  ...... . 1".2 . - s j - -  3.2,3Eb,33,,o 

~~/~----~--3 T,b,2 T2b 

~ - -  T2c 

Partitioning Partitioning Diagonalization Diagonatization 
according toms according to p of S 2 of C3 

(g=C2v) 

Fig. 1. Schematic diagram depicting the formation of a symmetrized multi-determinantal basis for a 
particular electronic configuration of the tetrahedrane molecule (T a point group). In the last column 
the subscripts a, b and c are used to distinguish the spatial (orthonormal) components of a given 

multiplet 

leading to the ultimate result of a properly symmetrized multi-determinantal 
basis for the set of wavefunctions (M S = 0) considered in the CI treatment. 

Four Hamiltonian matrices over single determinants (Ms=0) are then 
constructed, one for each Czv irreducible representation (28 functions in A1, 24 
each in A2, B 1 and B2). Within each of these symmetry categories several multiplet 
secular equations are solved by making use of the corresponding matrix elements 
and the expansion coefficients of the appropriate symmetrized functions. 

B. Nitrous Oxide NNO : C2v 

CI calculations on linear molecules (diatomics) have been carried out by 
several authors [7-10]. All these treatments are characterized by one-electron basis 
sets consisting of eigenfunctions of L= (symmetry orbitals of the two-dimensional 
rotation group); while the present method is also applicable for such (imaginary) 
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basis sets, it also allows for a treatment involving exclusively real one-electron 
functions with comparable facility, as is demonstrated in the following example. 
The N N O  electronic configuration lrc22rcz3rc28o -2 (core 4~ c consists of seven 
doubly occupied cr MO's) gives rise to the following multiplets: 7 1S+, 4 1Z-, 
9 IA, 3 1F, 11 (M L = 6), 6 3Z+, 9 3Z-, 9 3A, 3 3/-, 3 5Z+, 2 5Z-, 3 5A and 7Z-. The 
C2~ subgroup is chosen as the differentiating Abelian subgroup in order to enable 
the use of a real MO basis [zrx, ~zy corresponding to the two C2~ symmetry planes 
cr(xz) and a(yz) respectively]. Of the 216 determinants deriving from the 
lrc 2 2re 2 3re 2 8a 2 configuration 88 have M s = 0 and these are divided equally among 
the A 1 and A z irreducible representations of C2~ (Table 1). In the usual manner a 
basis can be found for both the A 1 and A 2 subspaces (f2' type) which consists of the 
following C2v multiplets: 20 1A1, 18 3A1, 6 5A1, 17 1A2, 21 3A 2, 5 5A 2 and 7A 2 
(TZ-), with each of these sets representing a basis for a subspace of f2" type. These 
subspaces can be further partitioned by diagonalizing, for example, a C~2 (30 ~ 
rotation) matrix for an orthonormal  basis; for this operator the eigenvalues e are 
related to ML as follows: 

~zML 
e(ML) = c o s -  (2) 

6 

Once the symmetrized multi-determinantal functions have been obtained for all 
configurations included in the treatment, the procedure for solving the secular 
equations for each symmetry type is essentially the same as that discussed above 
in the case of tetrahedrane. 

4. Application of Configuration Interaction 

Within the framework of the general description for carrying out a CI calcula- 
tion given above the experimenter is left with several options, the most important 
of which are: accuracy of the MO basis set employed in the construction of the 
determinants, relative size of the valence and core sets of orbitals and method of 
selecting electronic configurations to be explicitly included in the calculation. 

Generally speaking, of two sets of SCF MO's that which gives the lower ground 
state determinantal total energy is preferred in the CI treatment. There are, 
however, two comments relevant to this overall evaluation: the first is that the 
sensitivity of the CI treatment decreases fairly rapidly in practice as the MO basis 
set approaches Hartree-Fock accuracy, that is, the CI treatment has a compensat- 
ing influence which tends to make the choice of SCF MO's less critical Ell, 123 ; 
the other is that obviously even the Hartree-Fock SCF orbitals are not optimum 
for a given CI expansion of the ground state since they have been optimized in the 
electronic field produced by a single determinantal wavefunction rather than for 
the field of the multi-determinantal ground state itself. The procedure of employing 
a set of orthonormal one-electron functions resulting from a multi-configuration 
SCF calculation [-13] for the ground state as an MO basis for a CI calculation 
dealing with the entire electronic spectrum of this system is an attractive possibility 
for feature work. 

Once an MO basis set has been selected, it is necessary to define realistic limits 
to the scope of the CI calculation undertaken both by restricting the size of the 
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valence set employed and by omitting from consideration certain configurations 
arising from the higher excitations within this set. There are, of course, sound 
theoretical reasons motivating the latter simplification: triple and higher excitation 
configurations cannot interact directly with the ground state determinant and the 
spectrally important single excitation states bear the same relationship to con- 
figurations resulting from quadruple and greater excitations. In addition, the less 
stable of the triple excitation species are generally found to make only a minute con- 
tribution to the low lying states of a given system [14]. As a general rule, the more 
effective method of extending a CI treatment is to expand the valence set rather than 
to include a greater number of configurations involving excitations within the 
initial valence set 15. 

At the same time experience indicates quite strongly that the nature of a given 
CI treatment must be determined to a large extent by the individual characteristics 
of the system under consideration. Indeed, this specificity constitutes one of the 
strongest arguments for the use of CI techniques to supplement the results of SCF 
calculations. It has been shown, for example, that while the common single excita- 
tion treatment of molecular electronic spectra [15, 16] has been of considerable 
use in demonstrating the applicability of modern theory to the study of these 
phenomena, its results are often dramatically different from those obtained from 
more complete CI calculations which include double and higher excitation 
configurations, as in the classic examples of benzene and trans-butadiene [17, 18]. 
The influence of triple excitation configurations is found to vary considerably 
among different systems, having a definite effect on the spectra of benzene [17] 
and nitrous oxide [14] but causing almost no change in the corresponding data 
for formic acid [ 19] and formaldehyde; finally, the ammonia borane molecule [20] 
shows negligible interaction between any of its configurations. In each of these 
cases, however, good agreement with experimental findings has been obtained. 

In addition to its utilization in the study of vertical excitation spectra, con- 
figuration interaction also finds application for the description of molecular 
potential surfaces, especially when a major change in the electronic configuration 
of the ground state occurs as a result of variations in geometry; examples illustrat- 
ing the effectiveness of CI techniques in this regard include studies of the ethylene 
rotational barrier [12], the rectangular deformation of cyclobutadiene [11] and 
the angular distortion of cyclopropane. In general, because of its potential for 
studying geometry changes in molecular excited states the CI method appears 
to be a valuable tool with which the experimentalist can investigate a wide area of 
spectroscopy which is virtually inaccessible by purely experimental means. 

The ability of CI to introduce a certain amount of correlation into the ground 
state wavefunction also has other valuable effects; studies of nitrous oxide [14] 
and formic acid [19] in particular have shown that SCF molecular properties are 
definitely improved on emplyoment of CI. In summary, the case with which the 
CI techniques described herein can be handled and the effectiveness with which 
they can be applied provide compelling reasons for their use as a supplement to 
the SCF MO method. 

is In practice the valence set is usually composed of approximately equal numbers of occupied 
and virtual MO's. 
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